Распродажа

Электронные компоненты со склада по низким ценам, подробнее >>>

Журнал Радио

2004: 
1, 2, 3, 4, 5, 6, 7, 8
2003: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
2002: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
2000: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1999: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1998: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1971: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1947: 
1, 2, 3, 4, 5
1946: 
1, 2, 3, 4-5, 6-7, 8-9

Новости электроники

В 14 раз выросло количество россиян на MediaTek Labs ? проекте по созданию устройств "интернета вещей" и "носимых гаджетов"

Сравнив статистику посещения сайта за два месяца (ноябрь и декабрь 2014 года), в MediaTek выяснили, что число посетителей ресурса из России увеличилось в 10 раз, а из Украины ? в 12. Таким образом, доля русскоговорящих разработчиков с аккаунтами на labs.mediatek.com превысила одну десятую от общего количества зарегистрированных на MediaTek Labs пользователей.

Новое поколение Джобсов или как MediaTek создал свой маленький "Кикстартер"

Амбициозная цель компании MediaTek - сформировать сообщество разработчиков гаджетов из специалистов по всему миру и помочь им реализовать свои идеи в готовые прототипы. Уже сейчас для этого есть все возможности, от мини-сообществ, в которых можно посмотреть чужие проекты до прямых контактов с настоящими производителями электроники. Начать проектировать гаджеты может любой талантливый разработчик - порог входа очень низкий.

Семинар и тренинг "ФеST-TIваль инноваций: MAXIMум решений!" (14-15.10.2013, Новосибирск)

Компания Компэл, приглашает вас принять участие в семинаре и тренинге ?ФеST-TIваль инноваций: MAXIMум решений!?, который пройдет 14 и 15 октября в Новосибирске.

Мне нравится

Комментарии

дима пишет в теме Параметры биполярных транзисторов серии КТ827:

люди куплю транзистар кт 827А 0688759652

тамара плохова пишет в теме Журнал Радио 9 номер 1971 год. :

как молоды мы были и как быстро пробежали годы кулотино самое счастливое мое время

Ивашка пишет в теме Параметры отечественных излучающих диодов ИК диапазона:

Светодиод - это диод который излучает свет. А если диод имеет ИК излучение, то это ИК диод, а не "ИК светодиод" и "Светодиод инфракрасный", как указано на сайте.

Владимир пишет в теме 2Т963А-2 (RUS) со склада в Москве. Транзистор биполярный отечественный:

Подскажите 2т963а-2 гарантийный срок

Владимир II пишет... пишет в теме Параметры биполярных транзисторов серии КТ372:

Спасибо!

Журнал Радио 6 номер 2002 год. КОМПЬЮТЕРЫ

СХЕМОТЕХНИКА БЛОКОВ ПИТАНИЯ ПЕРСОНАЛЬНЫХ КОМПЬЮТЕРОВ

Р. АЛЕКСАНДРОВ, г. Малоярославец Калужской обл. 

Продолжение. Начало см. в "Радио", 2002, ╧5

Иногда напряжение -5 В получают без отдельного выпрямителя из напряжения -12 В с помощью интегрального стабилизатора серии 7905. Отечественные аналоги ≈ микросхемы КР1162ЕН5А, КР1179ЕН05. Ток, потребляемый узлами компьютера по этой цепи, обычно не превышает нескольких сотен миллиампер.

В некоторых случаях интегральные стабилизаторы устанавливают и в других каналах ИБП. Это решение исключает влияние изменяющейся нагрузки на выходные напряжения, но снижает КПД блока и по этой причине применяется только в сравнительно маломощных каналах. Примером может служить схема узла выпрямителей ИБП PS-6220C, показанная на рис. 8. Диоды VD7 ≈ VD10 ≈ защитные.

Как и в большинстве других блоков, здесь в выпрямителе напряжения +5 В установлены диоды с барьером Шоттки (сборка VD6), отличающиеся меньшими, чем у обычных диодов падением напряжения в прямом направлении и временем восстановления обратного сопротивления. Оба этих фактора благоприятны для увеличения КПД. К сожалению, сравнительно низкое допустимое обратное напряжение не позволяет применять диоды Шоттки и в канале +12 В. Однако в рассматриваемом узле эта проблема решена последовательным соединением двух выпрямителей: к 5 В недостающие 7 В добавляет выпрямитель на сборке диодов Шоттки VD5.

Для устранения опасных для диодов выбросов напряжения, возникающих в обмотках трансформатора на фронтах импульсов, предусмотрены демпфирующие цепи R1C1, R2C2, R3C3 и R4C4.

УЗЕЛ УПРАВЛЕНИЯ

В большинстве "компьютерных" ИБП этот узел построен на базе микросхемы ШИМ-контроллера TL494CN (отечественный аналог ≈ КР1114ЕУ4) или ее модификаций. Основная часть схемы подобного узла ≈ на рис. 9, на ней показаны и элементы внутреннего устройства упомянутой микросхемы.


Увеличить

Генератор пилообразного напряжения G1 служит задающим. Его частота зависит от номиналов внешних элементов R8 и СЗ. Генерируемое напряжение поступает на два компаратора (A3 и А4), выходные импульсы которых суммирует элемент ИЛИ D1. Далее импульсы через элементы ИЛИ-НЕ D5 и D6 подают на выходные транзисторы микросхемы (V3, V4). Импульсы с выхода элемента D1 поступают также на счетный вход триггера D2, и каждый из них изменяет состояние триггера. Таким образом, если на вывод 13 микросхемы подана лог. 1 или он, как в рассматриваемом случае, оставлен свободным, импульсы на выходах элементов D5 и D6 чередуются, что и необходимо для управления двухтактным инвертором. Если микросхему TL494 применяют в однотактном преобразователе напряжения, вывод 13 соединяют с общим проводом, в результате триггер D2 больше не участвует в работе, а импульсы на всех выходах появляются одновременно.

Элемент А1 ≈ усилитель сигнала ошибки в контуре стабилизации выходного напряжения ИБП. Это напряжение (в рассматриваемом случае ≈ +5 В) через резистивный делитель R1R2 поступает на один из входов усилителя. На втором его входе ≈ образцовое напряжение, полученное от встроенного в микросхему стабилизатора А5 с помощью резистивного делителя R3 ≈ R5. Напряжение на выходе А1, пропорциональное разности входных, задает порог срабатывания компаратора А4 и, следовательно, скважность импульсов на его выходе. Так как выходное напряжение ИБП зависит от скважности (см. выше), в замкнутой системе автоматически поддерживается его равенство образцовому с учетом коэффициента деления R1R2. Цепь R7C2 необходима для устойчивости стабилизатора. Второй усилитель (А2) в данном случае отключей подачей соответствующих напряжений на его входы и в работе не участвует.

Функция компаратора A3 ≈ гарантировать наличие паузы между импульсами на выходе элемента D1, даже если выходное напряжение усилителя А1 вышло за допустимые пределы. Минимальный порог срабатывания A3 (при соединении вывода 4 с общим проводом) задан внутренним источником напряжения GV1. С увеличением напряжения на выводе 4 минимальная длительность паузы растет, следовательно, максимальное выходное напряжение ИБП падает.

Этим свойством пользуются для плавного пуска ИБП. Дело в том, что в начальный момент работы блока конденсаторы фильтров его выпрямителей полностью разряжены, что эквивалентно замыканию выходов на общий провод. Пуск инвертора сразу же "на полную мощность" приведет к огромной перегрузке транзисторов мощного каскада и возможному выходу их из строя. Цепь C1R6 обеспечивает плавный, без перегрузок, пуск инвертора.

В первый после включения момент конденсатор С1 разряжен, а напряжение на выводе 4 DA1 близко к +5 В, получаемым от стабилизатора А5. Это гарантирует паузу максимально возможной длительности, вплоть до полного отсутствия импульсов на выходе микросхемы. По мере зарядки конденсатора С1 через резистор R6 напряжение на выводе 4 уменьшается, а с ним и длительность паузы. Одновременно растет выходное напряжение ИБП. Так продолжается, пока оно не приблизится к образцовому и не вступит в действие стабилизирующая обратная связь. Дальнейшая зарядка конденсатора С1 на процессы в ИБП не влияет. Так как перед каждым включением ИБП конденсатор С1 должен быть полностью разряжен, во многих случаях предусматривают цепи его принудительной разрядки (на рис. 9 не показаны).

ПРОМЕЖУТОЧНЫЙ КАСКАД

Задача этого каскада ≈ усиление импульсов перед их подачей на мощные транзисторы. Иногда промежуточный каскад отсутствует как самостоятельный узел, входя в состав микросхемы задающего генератора. Схема такого каскада, примененного в ИБП PS-200B, показана на рис. 10. Согласующий трансформатор Т1 здесь соответствует одноименному на рис. 5.

В ИБП APPIS использован промежуточный каскад по схеме, приведенной на рис. 11, отличающийся от рассмотренного выше наличием двух согласующих трансформаторов Т1 и Т2 ≈ отдельно для каждого мощного транзистора. Полярность включения обмоток трансформаторов такова, что транзистор промежуточного каскада и связанный с ним мощный транзистор находятся в открытом состоянии одновременно. Если не принять специальных мер, через несколько тактов работы инвертора накопление энергии в магнитопроводах трансформаторов приведет к насыщению последних и значительному уменьшению индуктивности обмоток.

Рассмотрим, как решается эта проблема, на примере одной из "половин" промежуточного каскада с трансформатором Т1. При открытом транзисторе микросхемы обмотка Ia подключена к источнику питания и общему проводу. Через нее течет линейно нарастающий ток. В обмотке II наводится положительное напряжение, поступающее в базовую цепь мощного транзистора и открывающее его. Когда транзистор в микросхеме будет закрыт, ток в обмотке Iа прервется. Но магнитный поток в магнитопроводе трансформатора не может измениться мгновенно, поэтому в обмотке Iб возникнет линейно спадающий ток, текущий через открывшийся диод VD1 от общего провода к плюсу источника питания. Таким образом энергия, накопленная в магнитном поле в течение импульса, в паузе возвращается в источник. Напряжение на обмотке II во время паузы ≈ отрицательное, и мощный транзистор закрыт. Аналогичным образом, но в противофазе, работает вторая "половина" каскада с трансформатором Т2.

Наличие в магнитопроводах пульсирующих магнитных потоков с постоянной составляющей приводит к необходимости увеличивать массу и объем трансформаторов Т1 и Т2. В целом промежуточный каскад с двумя трансформаторами не очень удачен, хотя он и получил довольно широкое распространение.

Если мощности транзисторов микросхемы TL494CN недостаточно для непосредственного управления выходным каскадом инвертора, применяют схему, подобную приведенной на рис. 12, где изображен промежуточный каскад ИБП KYP-150W. Половины обмотки I трансформатора Т1 служат коллекторными нагрузками транзисторов VT1 и VT2, поочередно открываемых импульсами, поступающими от микросхемы DA1. Резистор R5 ограничивает коллекторный ток транзисторов приблизительно до 20 мА. С помощью диодов VD1, VD2 и конденсатора С1 на эммитерах транзисторов VT1 и VT2 поддерживают необходимое для их надежного закрывания напряжение +1,6 В. Диоды VD4 и VD5 демпфируют колебания, возникающие в моменты переключения транзисторов в контуре, образованном индуктивностью обмотки I трансформатора Т1 и ее собственной емкостью. Диод VD3 закрывается, если выброс напряжения на среднем выводе обмотки I превышает напряжение питания каскада.

Еще один вариант схемы промежуточного каскада (ИБП ESP-1003R) показан на рис. 13. В данном случае выходные транзисторы микросхемы DA1 включены по схеме с общим коллектором. Конденсаторы С1 и С2 ≈ форсирующие. Обмотка I трансформатора Т1 не имеет среднего вывода. В зависимости от того, какой из транзисторов VT1, VT2 в данный момент открыт, цепь обмотки замыкается на источник питания через резистор R7 или R8, подключенный к коллектору закрытого транзистора.

(Окончание следует)

Вернуться к содержанию журнала "Радио" 6 номер 2002 год







Ваш комментарий к статье
Журнал Радио 6 номер 2002 год. КОМПЬЮТЕРЫ :
Ваше имя:
Отзыв: Разрешено использование тэгов:
<b>жирный текст</b>
<i>курсив</i>
<a href="http://site.ru"> ссылка</a>