П. Вовк Температурные датчики Dallas Semiconductor.╚Температура в течение дня будет изменяться от 10 до 16 градусов┘╩ Эти слова мы часто слышим по радио, собираясь на работу И соответственно принимаем какие-то решения относительно обеспечения комфортных условий для нашей жизни. Для этого мы обладаем аналитическим аппаратом - мозгом. Устройства же автоматики таким аппаратом пока не обладают, да и прогноз погоды пока не для них┘ Но задача обеспечения тепловых режимов работы для автоматики стоит очень остро не один десяток лет И датчиков температуры разработано за это время несметное количество. Фирма Dallas Semiconductor не осталась в стороне от этого процесса и разработала собственную серию цифровых и аналоговых датчиков температуры. Как раз о них и пойдет речь в этой статье. Цифровые температурные датчики позволяют избежать многих проблем, связанных с передачей аналогового сигнала от полупроводникового датчика к входу АЦП или компаратора. Эти проблемы связаны с тем, что выход термодатчика, как правило, маломощный и линия передачи аналогового сигнала сильно подвержена влиянию электромагнитных полей и помех, что может существенно исказить результаты измерений. Кроме того, в случае, если датчик удаленный, приходится учитывать и падение напряжения на ней, что еще более осложняет обработку результатов измерений. Таким образом, даже при наличии достаточно линейного и точного элемента преобразования, производители не могут гарантировать точность лучше 1,5 .. 2,0ºС. В случае же цифрового термодатчика процесс преобразования ╚аналоговый сигнал-код╩ производится прямо на кристалле, и в дальнейшем данные на приемник информации поступают уже в цифровом виде. Как правило, цифровые температурные датчики имеют последовательный интерфейс и строятся по схеме, приведенной на рис. 1. Рисунок 1. Блок-схема стандартного цифрового температурного датчика Dallas Semiconductor в своих термодатчиках применяет интерфейсы SPI, 3-проводный интерфейс (очень похожий по логике на SPI), I²C и 1-проводный (MicroLan). Цифровые датчики температуры Dallas Semiconductor часто содержат накристалле дополнительные блоки, позволяющие значительно расширить сферу их применения и облегчающую построение блоков автоматики, так как содержат готовые стандартные узлы. Среди таких узлов можно выделить термостат, статическая и энергонезависимая память, встроенные регистры критической температуры, программируемые пользователем. Термостат в самом общем случае состоит из двух ячеек энергонезависимой памяти, в которых содержатся значения критических температур и логического блока, имеющего 3 вывода: TH, TL, и TCOM. Логика работы стандартного термостата ясна из рис. 2. Рисунок 2. Логика роботы стандартного термостата Иногда, с целью экономии количества выводов, применяется только гистерезисный выход, а в датчиках, использующих 1-проводный интерфейс, их нет вообще. Признаком того, что температура вышла за указанные пределы, является установление флагов в регистрах самого термодатчика. Исключением является только DS1821 - у него цифровой вывод в нормальном режиме работы используется как гистерезисный выход термостата. При производстве полупроводниковых датчиков температуры невероятно сложно достичь линейности преобразования во всем диапазоне измеряемых температур, который в большинстве датчиков составляет -55 .. +125ºС. Как видно из рис. 3, на краях этого диапазона наблюдается значительное ухудшение линейности и нарастание ошибки преобразования. Для подавляющего большинства датчиков разных производителей, сведения, приведенные в документации справедливы лишь для диапазона -30 .. +110ºС. Поэтому приходится применять либо неполупроводниковые температурные датчики, либо заниматься построением корректировочных таблиц. С этой точки зрения интересна микросхема DS1624. Она имеет 256 байт EEPROM и очень маленький шаг преобразования. Таким образом, у конструктора в зависимости от поставленной перед ним задачи, есть выбор, связанный с построением корректировочной таблицы - либо с ее помощью скомпенсировать нелинейность преобразования на краях диапазона, либо ограничиться узким диапазоном измерений, но построить систему с разрешающей способностью, предоставленной этой микросхемой, т.е. порядка нескольких сотых - одной десятой доли градуса Цельсия. При этом корректировочная таблица заносится непосредственно в саму микросхему. Рисунок 3. Зависимость погрешности измерений от температуры В последнее время у Dallas Semiconductor появились и аналоговые датчики и температурные компараторы. Далее приведены основные параметры датчиков температуры Dallas Semiconductor, сгруппированных по типу интерфейса. Термодатчики с интерфейсом SPI/3-проводным:DS1620
Термодатчики с интерфейсом I²C:DS1621
DS1624
DS1629
DS1721
DS1775
DS1780
DS75
DS18S20
DS1821
DS1822
Аналоговые термодатчики:DS56
DS60
Кроме перечисленных выше термодатчиков, Dallas Semiconductor встраивает цепи измерения температуры даже в самых неожиданных устройствах, например, в приборах автоматической идентификации iButton, часах реального времени и т.д. Как видно из этой статьи, спектр температурных датчиков Dallas Semiconductor достаточно широк для построения измерительных сетей любой сложности. И прогноз погоды для устройств автоматики совсем необязателен┘ |
Ricardojask пишет... Извините за то, что вмешиваюсь┘ У меня похожая ситуация. Можно обсудить. Пишите здесь или в PM.
06/11/2015 14:21:15 |
TrumanRems пишет... Специально зарегистрировался на форуме, чтобы сказать Вам спасибо за помощь в этом вопросе, как я могу Вас отблагодарить?
06/11/2015 14:50:46 |
Donaldodon пишет... Прошу прощения, что я Вас прерываю, но не могли бы Вы расписать немного подробнее.
10/11/2015 17:27:13 |
CharlesNog пишет... Жаль, что сейчас не могу высказаться - тороплюсь на работу. Но вернусь - обязательно напишу что я думаю по этому вопросу.
17/11/2015 20:14:01 |
Ваш комментарий к статье | ||||