Твердотельная электроника. Учебное пособие.
6.19. Размерные эффекты в МДП-транзисторах
Если рассмотреть соотношения между геометрическими размерами МДП-транзистора и параметрами области пространственного заряда, то обращает на себя внимание тот факт, что в этих соотношениях отсутствует знак "много больше". Действительно, длина и ширина канала сравнимы с толщиной обедненной области и толщиной подзатворного диэлектрика, величина области отсечки - с длиной канала транзистора. Поэтому можно ожидать, что вольт-амперные характеристики такого МДП-транзистора и его основные параметры (подвижность μn и пороговое напряжение VT) будут отличаться от соответствующих параметров и характеристик МДП-транзистора с большими размерами.
Для точного рассмотрения ВАХ МДП-транзистора с малыми размерами необходимо решать двухмерное уравнение Пуассона. Поверхностный потенциал ψ в этом решении будет зависеть не только от координаты y вдоль канала, но и от координаты z вглубь и координаты х поперек канала. Точное решение двух- и трехмерного уравнения Пуассона возможно только численными методами. Затем, используя для плотности тока выражение (6.43) и проводя численное интегрирование этого уравнения, получают вольт-амперные характеристики.
Однако некоторые эффекты, связанные с уменьшением размеров транзисторов, можно описать качественно на языке изменения порогового напряжения и подвижности. Рассмотрим, как изменяется пороговое напряжение VT при изменении длины канала L.
На рисунке 6.25 приведена схема МДП-транзистора с малой длиной канала (длина канала L сравнима с шириной обедненной области p-n перехода). Как видно из рисунка 6.25, в этом случае часть заряда в обедненной области под затвором экранируется сильнолегированными областями истока и стока.
Рис. 6.25. Модель МОП ПТ, учитывающая эффект короткого канала
Этот эффект приводит к тому, что заряд на металлическом затворе, необходимый для создания обедненного слоя, уменьшается, следовательно, уменьшается и пороговое напряжение VT. Как видно из геометрического рассмотрения, при аппроксимации формы заряда в обедненной области трапецией эффективный заряд в области обеднения будет равен:
где l, QB - ширина и заряд обедненной области, определенные ранее, xJ - глубина p-n+ перехода.
Уменьшение порогового напряжения, согласно (6.104), будет возрастать с уменьшением длины канала L, уменьшением легирования NA и увеличением напряжения смещения канал-подложка VSS (в последних случаях увеличивается ширина области обеднения l). На рисунке 6.26 приведены экспериментальные и расчетные изменения величины порогового напряжения ΔVT за счет уменьшения длины канала.
Рис. 6.26. Изменение порогового напряжения ΔVT как функция длины L и ширины W канала МОП ПТ
При уменьшении ширины канала наблюдается противоположный эффект. На рисунке 6.27 приведен поперечный разрез МДП-транзистора с узким каналом. В этом случае напряжение на затворе формирует тонкую обедненную область под толстым диэлектриком и толстый обедненный слой под тонким диэлектриком. В отличие от идеального случая в реальном случае граница обедненной области имеет форму, близкую к параболической. При увеличении напряжения на затворе VGS возрастают обедненная область под толстым окислом у МДП-транзистора с узким каналом, эффективный заряд QВ эф в области обеднения и, следовательно, пороговое напряжение.
Рис. 6.27. Модель МОП ПТ, учитывающая эффект узкого канала
Чем больше соотношение толщин между толстым и тонким окислом, тем больше область перехода и тем выше пороговое напряжение. Чем уже канал, тем больше изменения порогового напряжения. В пределе, когда ширина канала стремится к нулю, пороговое напряжение приближается к пороговому напряжению для структур с толстым окислом.
При одновременном уменьшении геометрических размеров обе ранее обсужденные тенденции работают в противоположных направлениях. Эффект, связанный с уменьшением ширины, доминирующий, и обычно на практике наблюдается увеличение порогового напряжения при пропорциональном сокращении геометрических размеров.
На величину подвижности носителей μn в канале в основном влияет уменьшение длины канала. В этом случае возрастает величина тянущего электрического поля, происходят разогрев носителей и уменьшение подвижности μn.
Величина подвижности μn равна:
где μn - подвижность электронов в МДП-транзисторах с длинным каналом.
Множитель α, определенный экспериментально, составил α = 0,35 мкм.
Вольт-амперные характеристики МДП-транзисторов с минимальными размерами удовлетворительно описывались основными соотношениями (6.10) и (6.12) с учетом поправок на пороговое напряжение и подвижность.
Copyright © 2003-2008 Авторы
Ваш комментарий к статье | ||||